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The gracity load distortion rms (half path length) values are calculated for the
hour angle-declination angle (HA-dec) antenna by computing the positions of the
three principal axes fixed on the reflector structure, but rotating in declination and
hour angle. For a symmetric structure, the rms values are equal to the results from
the standard square root of the sum of the squares equation. For unsymmetric
structures, the required modifications to the equation are described. Contour
level plots for a sample 27.4-m HA-dec antenna show the variations of the rms
with respect to selected surface panel setting positions. Also plotted are the X, Y,
and Z load components for the panels set at zenith look.

I. Introduction

To compute the gravity loading distortions of a ground
radio antenna structure, a model is created that is input
to the NASTRAN or IDEAS program and the displace-
ments of the surface panel mounting points are best fitted
with a paraboloid and the rms of the residuals becomes an
index useful for determining the RF performance.

A practical structural model will usually be described
by using a rectangular or cylindrical coordinate system
fixed on the reflector with the three principal axes (1) “X”
parallel to the elevation axis, (2) “Y” normal to X and
(3) “Z” normal to the X-Y plane and coincident with the
centerline of the reflector structure.
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For the azimuth-elevation (az-el) axes configuration, the
angle between the gravity vector and the Y and Z axes is
cither the elevation angle or its complement. However, for
the hour angle-declination angle (HA-dec) axes configura-
tion, the angle between the gravity vector and the prin-
cipal axes of the structural model becomes a function of
the declination, hour, and latitude angles.

The standard coordinate conversion equations from the
TTA-dec system to the az-el system are used to solve for
the components of the gravity vectors along the principal
axes of the structural model.

Gravity loadings applied in the directions of the three
principal axes are the basic loadings of the structural
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model. The associated three rms values can then be com-
bined by superposition with the geometric relationships to
determine the resultant rms for a particular pointing
direction of the antenna.

The rms is computed in this report, as deseribed above
and detailed below, by superposition. However, an alter-
native rms value can be computed for any particular point-
ing direction with the rms program (Ref. 1) by adding
three component displacements for the three basic load-
ings into a single displacement vector before the best fit
by the paraboloid is made. Some comparisons using the
results from both methods are presented together with
the explanations of the accuracies of the superposition
method.

The sample antenna is a modified reflector structure
of the Caltech 27.4-m(90-ft) HA-dec antenna.

Il. Calculations

The motion of the RF boresight of a HA-dec antenna
may be described by the equatorial coordinates system.
The two axes of rotation are centered at point “O” of
Fig. 1. The polar axis is OP and the rotation about this
axis is measured in hour angle “t” from the meridian
circle. The rotation of the declination axis is measured as
declination angle “8” from the equator OUQR. The re-
sultant direction of the RF boresight is along the radial
line OM, which intersects the spherical surface at M.

The computer model is assumed to use the coordinate
system described in the second paragraph. The Z axis of
the reflector structure is coincident with radial line OM
and the RF boresight direction line. The azimuth mea-
suring vertical plane OZMH contains these lines and the
vertical gravity vector MG. As shown in Fig. 2, the X and
Y principal axes of the reflector are rotated with respect
to this azimuth measuring plane as the Y axis is coincident
with the hour angle great circle. This angle of rotation
measured at point M is B3, the angle between the hour
angle cirele and the azimuth measuring circle ZMH.

Spherical triangle PZM may then be used to compute
angle 8. That is, given
A = azimuth angle
PZ = 90-deg — polar angle ¢
t = hour angle

~ PM = 90-deg — declination angle §
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then compute
7.D = zenith distance
from
Cos (ZD) = sin () sin (8) + cos (¢) cos (8) cos (t)
which is a standard astronomical formula.

Using half angle relations of the sides and angles of a
spherical triangle to minimize sign anomalies, the follow-
ing equations were used:

r ( PM —PZ cos t 7
172[A+ Bl =t = 2 2
= tan™!
s (M EPZY ot (1)
€ 2 2
Fsi (PM—PZ>C()9L_
1/2[A + B] tan™! ‘ 2 2
= tan-
) . PM + PZ sin t (2)
i sin 3 si 5 |

B and A may be resolved from the above equations by
computing the right sides of the equations. Then

B = right sides ((1) — (2))

A = right sides ((1) + (2))

The antisymmetric gravity vector component M] acts at
angle f to the X and Y axes of the reflector. Therefore the
resultant component factors with respect to the unit
gravity vector for the two X, and Y, axes are:

X = —sin(ZD)sin (8) =X’ (3)

Y = —sin(ZD)cos (B) — Y’ (4)

For the Z component, since gravity is on or working at
any position and our primary interest is that due to the
change in the direction of the Z gravity vector, it follows
that

Z =10 —cos(ZD) - Z’ (5)

<

1.0 is the unit gravity vector value at zenith look where
ZD-zenith distance is equal to 0.
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X', Y, and Z’ are the component values at the surface
panels setting position. The rms for a particular pointing
direction may then be computed by

rms = \/(rmsf)ﬁ(X()2 + (rms,)*(Yo)? + (rms,)¥(Z.)?
(6)

When the antenna structure is symmetric about the three
axes, the above equation may be used. When the structure
is not symmetrical, the method of resolution described in
the Appendix will be necessary. The Appendix also illus-
trates the use of vector analysis to compute the load
components,

IIl. Results

A computer program was coded to solve for the load
components and for the rms distortions for a range of
declinations and hour angles. A JPL library subroutine
was used to output contour level plots of the results.

First, the surface panels of the antenna were assumed
to be set to a perfect paraboloid at zenith look, with hour
angle = 0 and declination angle = 37 deg (the polar
angle = 37 deg). Then the surface panels setting position
was changed to 0 deg declination 0 deg hour angle and to
—10 deg declination. The rms were computed and output
on contour level plots (Figs. 3, 4, and 5 respectively).

The X, Y, and Z load components for only the zenith
look panels setting cases are plotted where the X’ Y’ and
Z' components are equal to 0 (Figs. 6, 7, and 8, respec-
tively).

For other surface panels setting angles, the particular
load components at the setting angle may be subtracted
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from the curves for the zenith look case to obtain the
resulting changes from the setting position.

Table 1 lists some computed rms values for using the
superpositioning method and the displacement adding
and best fitting rms program.,

IV. Summary

The rms values in this report are only for the surface
panel mounting points of the reflector structure. Errors
of the surface panels, for setting, etc., must be added to
obtain the rms values the RF uses.

For DSN use, the celestial targets dre close to the
ecliptic plane. Inspection of the rms values along the
0 deg declination angle vs. hour angles shows that the
minimum degradation due to gravity loads results when
the surface panels are set with the reflector close to 0 deg
declination angle.

For the northern hemisphere locations, in the next
decade, the far out planets will be below the ecliptic. For
this condition, better performance under gravity loads
can be expected with the initial setting of —10 deg or
lower elevation angles.

It is interesting to note that the setting of the surface
panels at 0 deg declination minimizes the Y-component
changes. Referring to Fig. 7, the Y-component does not
change throughout the hour angle change; it starts with
about 0.6 and remains at this figure. For surface panels
set at 0 deg declination, the gravity distortions contribu-
tion by the Y component is zero for targets along the
ecliptic.
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Appendix

General Formula for RMS Computation

In the foregoing, relationships have been given to ex-
press the loading components in the direction of the
reflector coordinate axes, and an equation has been sup-
plied for computation of the rms in terms of the three
rms values computed independently for the loadings
along each of the three reflector axes. The equation given,
however, is correct only for the case of a reflector struc-
ture that is symmetric about its own X-Z and Y-Z planes.
In the general case where this symmetry does not occur,
the equation must be modified to account for coupling of
the loading. In Ref. 2 relationships have been given to
compute the rms for a general, unsymmetric az-cl antenna.
That development will be extended to the HA-dec type
of axes arrangement.

We will consider a moving set of X, Y, and Z axes
attached to the reflector as described previously and a
set of reference axes fixed on the ground. For the ref-
erence set of axes let X, and Y, establish the horizon
plane

where
X, points east
Y, points north
and let
7, point to the zenith
If we consider a set of unit vectors {e,} aligned with the
reflector’s X, Y, and Z axes, and set of unit vectors {e,}

aligned with the X, Y,, and Z, axes, then the transforma-
tion from the reflector to the ground axes can be made by

{e.} = [T] {e,}

The components of the transformation (orthogonal) [T],
in terms of the latitude, ¢, the declination, 8, and the
hour angle ¢, can be shown to be

cos ¢ —sintsin ¢ sin t cos ¢
sin 8 sin ¢ cos & cos ¢ cos & sin ¢

T} = + sin 8 sin ¢ cos t —sin § cos ¢ cos t
—cos § sint sin & cos ¢ sin 8 sin ¢

—cos 8 sin ¢ cos ¢

The components of the third row of the transformation
are the components of a unit vector in the direction of
the reflector Z axis, which is the pointing vector. Conse-
quently, in azimuth-elevation coordinates, the elevation
angle a, (the complement of the zenith distance) is given
by

sine = T, , = sin 8 sin ¢ + cos & cos ¢ cos ¢t
Similarly, the azimuth angle, A, can be found from T as
cos A=T,,/cos « = (sin § cos ¢ — cos 8 sin ¢ cos t)/cos a
As an alternative to computing the gravity load com-

ponents according to relationships given previously, we
can take the vector scalar product of a unit vector in the
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+cos § cos ¢ cos t

direction of gravity loading (components 0.0, 0.0, —1.0)
with each of the three components of {e.} in turn to
obtain the projections X, Y, Z on the reflector X, Y, and
Z axes. As the result, we find:

X=-T,,= —sintcos ¢

I

= —T,, =-sin 8 cos ¢ cos t — cos § sin ¢

N

= ~T,, = —sina
The panel setting position is defined by the elevation rig-
ging angle y. When the setting angle has declination §

and zero hour angle, then y can be found from

y=90-¢+3
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At the setting position, the unit loading vector has the
following projections, X., Y,, Z., on the reflector axes

X. =00
Y. = —cosy
Z,= —siny

Consequently the net projections of the unit loading
vector are

§=X—X, = —sintcos¢
7=Y — Y. = cosy — cos §sin¢ + sin § cos ¢ cos ¢
(=272 —7Z,=siny —gina

From the linearity of the antenna structure response to
gravity loading it follows that the displacements of the
structure at any orientation (8, t) are a linear combination
of the separate displacements caused by gravity loading
in the directions of the X, Y, and Z axes. That is, let

{u(8,t)} = the displacement vector at 8, ¢
and

displacement vectors for gravity
{u.}, {uy}, {u:} = applied in the X, Y, Z, directions
respectively

then we have

{u(d, 1)} = £ {u,} + 9 {u,} + {{u}

Since the pathlength deviations of the reflector surface
from a paraboloid are linear functions of the displace-
ments and the geometry of the surface, the foregoing
equation for superposition of displacements also applies
to pathlength deviations.
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Furthermore, as shown in Ref. 2, the pathlength devia-
tions from the best-fitting paraboloid are also a linear
function of the displacements. Therefore it follows also
that pathlength deviations from the best-fit paraboloid at
any reflector attitude can be obtained by superposition of
the deviations for the three sets of gravity loadings
applied independently in the X, Y, and Z directions.

Therefore, if we let

SSX, SSY, SSZ be the mean square half path-
length deviations from the best fitting para-
boloids for gravity loadings in the X, Y, Z direc-
tions respectively

and
SXY, SXZ, SYZ be the mean inner product of the

half pathlength deviation vectors for X and Y, X
and Z, Y and Z, gravity loading respectively,

then the mean square pathlength deviation SS at any re-
flector orientation is given by

SS = £8SX + »* SSY + £*8SZ
+ 2&)SXY + 28{SXZ + 29¢SYZ

To make this equation represent the mean square path-
length deviation for an az-el antenna, set

£=0
7 = CO0sSy — COS «
For a reflector structure that is symmetric about the X-Z

plane, SYZ and SXY are zero. For a reflector that is sym-
metric about the Y-Z plane, SXZ and SXY are zero.

Finally, take the square root of the mean square to
obtain the rms half pathlength deviation.
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Table 1. RMS vs antenna position for 27.4-m (90-ft) HA-dec antenna=

Panels set
position

Antenna attitude Reflector principal axes load components

Reflector distortion — rms, mm?

Dec, HA, Dec, HA,

deg deg deg deg X, Y, Z, Superposition ~ Rms program
37 0 -53 0 0. -1.0 1.0 1.29 1.29
0 0 -53 0 0. —0.39819 0.79864 0.87 0.87
~10 0 -53 0 0. —0.26865 0.68200 0.73 0.73
37 0 0 90 ~(.79864 —-0.60182 1.0 1.23 1.23
0 0 0 90 —0.79864 -0. 0.79864 0.95 0.95
37 0 -10 50 —-0.61179 —0.68181 0.59895 0.90 0.90
0 0 -10 50 —-0.61179 -0.08000 0.39759 0.56 0.56
—10 0 -10 50 —-0.61179 -0.04954 0.28095 0.48 0.48

aGravity — off/on — rms values

rms, = 0.626237 mm (0.024655 in.)
0.787527 mm (0.031005 in.)
1.018235 mm (0.040088 in.)

"Rms, mim = Y% pathlength errors.

s ¥

i

rms,
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Fig. 1. Topocentric coordinates
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Fig. 4. RMS, mm (panels set at O deg declination)
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Fig. 5. RMS, mm (panels set at —10 deg declination)
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Fig. 7. Y. loading component
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Fig. 8. Z.loading component
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